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Vision Vehicle
-Dual-Fuel.Global Reach vehicle.

- Cruise at Mach 1 O.

- Hypersonic cruise lifting-body configuration.
- X-43 = 6% scale.

- Demonstrating cruise capability with a subscale
vehicle very challenging.

- Re-engine the X-43 Mach 7 vehicle.
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Initial Engine Design Process
. Engine redesigned not scaled down.

. Vehicle already defined" many constraints.

. Aero database existed" design for vehicle
performance.

. Two stage analytical approach.

. First stage: SRGULL tip-to-tail cycle analysis.
- 3D spillage, llKE' llc' base pressure

- Moo,a, qbap + 5 geometry variables

>;'

. Second stage: GASP & SHIP CFD.
- Focused on fuel injector design

- Thermal analysis performed for injector survivability
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Wind Tunnel Engine Testing
. Unable to test ignition sequence" separate

tests with a silane-hydrogen mixture & pure H2.
. HyPulse reflected shock tunnel

- Partial width and truncated forebody and aftbody sections

- Semi-direct connect test configuration

. LENS reflected shock tunnel
- Full flowpath model with 20 forebody and aftbody sections

- Free-jet test configuration

. All testing showed a sensitivity to fuel
composition" design modified to improve
hydrogen only combustion.
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Final Engine Testing
. HyPulse: 55 runs at 8 test conditions

- Mach 9 total enthalpy

- Mach 10 total enthalpy in 6 configurations

- Mach 10.3 total enthalpy

. LENS: 20 runs at 4 test conditions
- Low, nominal, and high dynamic pressure

- 2° AoA at nominal dynamic pressure
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Engine Test Data Analysis
. Consistent methodology applied to every test.

. Goal" determine combustion efficiency.

. GASP - forebody and inlet.
- 2D, blunt leading edges, transition guided by heat flux data

. SHIP - injectors, combustor, and nozzle.
- 3D PNS, center slice, 1-step reaction model

- 11c= 11m.11r

- 11rschedule determined by matching discrete pressure
distribution in the combustor

- Final11rbased on internal nozzle axial force

- Relatively easy to perform analysis for silane-hydrogen mixtures
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Combustor Performance Model

. . Model created from analysis of engine test data

Low l1r Propulsion Database Design Space
Mach=10:tO.5, a=1 °:t2°, q=1000:t200psf
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Flight Vehicle Propulsion Database
. Provide engine mass capture, propulsion.

surface forces and moment over a design space
of Mach 9.5 to 10.5, angle of attack -1° to 3°,
and dynamic pressure 800 to 1200 pst for both
untueled and fueled conditions.

. CFD database f(Moo,a,Qbap<P,llr).

Top& Sides: Aero

Tails; Aero

Forebody;Aero ---..

Internal FIowpath: Propulsion /

External Nozzle, Propulsion

External Cowl; Aero
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Overview of Flight Test
. Engine fueling sequence designed to match

engine wind tunnel test composition and levels.
. Ignitor and H2to high levels quickly.
. Gradual transition

to pure H2 .
. Well controlled.

Q). Duration = 50 times ~
.2

longer than sum LL

total of all final

engine tests.
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Pressure Instrumentation
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Centerline Pressure Fuel Off
. Shock-dominated flow.

. No nozzle pressurization.
. Fuel Off Mach 10 Flight Data

-~Propulsion Database Prediction
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Centerline Pressure Fuel On
. Significant.pressure rise.

. FuelOnMach10 FlightData
--0-- Propulsion Database Prediction
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Surface Pressure Contours

~
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Conclusions
. The Hyper-X program's third X-43 vehicle demonstrated

successful air-frame integrated scramjet operation and
vehicle control at hypervelocity conditions.

. Good agreement with expectations is an important
validation of propulsion testing in pulse facilities and in
the computational techniques used to understand
scramjet engine test data.

. Demonstrated cruise capability (subscale) at the design
cruise Mach number of a vision vehicle, shows that a
vehicle could be designed to accelerate through Mach
10 using an airbreathing engine.
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